skip to main content


Search for: All records

Creators/Authors contains: "Ticse Torres, R. E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    A bstract A search for new phenomena with top quark pairs in final states with one isolated electron or muon, multiple jets, and large missing transverse momentum is performed. Signal regions are designed to search for two-, three-, and four-body decays of the directly pair-produced supersymmetric partner of the top quark (stop). Additional signal regions are designed specifically to search for spin-0 mediators that are produced in association with a pair of top quarks and decay into a pair of dark-matter particles. The search is performed using the Large Hadron Collider proton-proton collision dataset at a centre-of-mass energy of $$ \sqrt{s} $$ s = 13 TeV recorded by the ATLAS detector from 2015 to 2018, corresponding to an integrated luminosity of 139 fb − 1 . No significant excess above the Standard Model background is observed, and limits at 95% confidence level are set in the stop-neutralino mass plane and as a function of the mediator mass or the dark-matter particle mass. Stops are excluded up to 1200 GeV (710 GeV) in the two-body (three-body) decay scenario. In the four-body scenario stops up to 640 GeV are excluded for a stop-neutralino mass difference of 60 GeV. Scalar and pseudoscalar dark-matter mediators are excluded up to 200 GeV when the coupling strengths of the mediator to Standard Model and dark-matter particles are both equal to one and when the mass of the dark-matter particle is 1 GeV. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    A bstract This paper describes a measurement of light-by-light scattering based on Pb+Pb collision data recorded by the ATLAS experiment during Run 2 of the LHC. The study uses 2 . 2 nb − 1 of integrated luminosity collected in 2015 and 2018 at $$ \sqrt{s_{\mathrm{NN}}} $$ s NN = 5 . 02 TeV. Light-by-light scattering candidates are selected in events with two photons produced exclusively, each with transverse energy $$ {E}_{\mathrm{T}}^{\gamma } $$ E T γ > 2 . 5 GeV, pseudorapidity |η γ | < 2 . 37, diphoton invariant mass m γγ > 5 GeV, and with small diphoton transverse momentum and diphoton acoplanarity. The integrated and differential fiducial cross sections are measured and compared with theoretical predictions. The diphoton invariant mass distribution is used to set limits on the production of axion-like particles. This result provides the most stringent limits to date on axion-like particle production for masses in the range 6–100 GeV. Cross sections above 2 to 70 nb are excluded at the 95% CL in that mass interval. 
    more » « less
  4. null (Ed.)
    A bstract A measurement of event-shape variables in proton-proton collisions at large momentum transfer is presented using data collected at $$ \sqrt{s} $$ s = 13 TeV with the ATLAS detector at the Large Hadron Collider. Six event-shape variables calculated using hadronic jets are studied in inclusive multijet events using data corresponding to an integrated luminosity of 139 fb − 1 . Measurements are performed in bins of jet multiplicity and in different ranges of the scalar sum of the transverse momenta of the two leading jets, reaching scales beyond 2 TeV. These measurements are compared with predictions from Monte Carlo event generators containing leading-order or next-to-leading order matrix elements matched to parton showers simulated to leading-logarithm accuracy. At low jet multiplicities, shape discrepancies between the measurements and the Monte Carlo predictions are observed. At high jet multiplicities, the shapes are better described but discrepancies in the normalisation are observed. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)
  8. null (Ed.)
    A bstract A search for new physics with non-resonant signals in dielectron and dimuon final states in the mass range above 2 TeV is presented. This is the first search for non-resonant signals in dilepton final states at the LHC to use a background estimate from the data. The data, corresponding to an integrated luminosity of 139 fb − 1 , were recorded by the ATLAS experiment in proton-proton collisions at a center-of-mass energy of $$ \sqrt{s} $$ s = 13 TeV during Run 2 of the Large Hadron Collider. The benchmark signal signature is a two-quark and two-lepton contact interaction, which would enhance the dilepton event rate at the TeV mass scale. To model the contribution from background processes a functional form is fit to the dilepton invariant-mass spectra in data in a mass region below the region of interest. It is then extrapolated to a high-mass signal region to obtain the expected background there. No significant deviation from the expected background is observed in the data. Upper limits at 95% CL on the number of events and the visible cross-section times branching fraction for processes involving new physics are provided. Observed (expected) 95% CL lower limits on the contact interaction energy scale reach 35.8 (37.6) TeV. 
    more » « less